High-Speed, Low ron, SPDT Analog Switch (2:1 Multiplexer/Demultiplexer Bus Switch)

DESCRIPTION

The DG3157 is a high-speed single-pole double-throw, low power, TTL-Compatible bus switch. Using sub-micro CMOS technology, the DG3157 achieves low on-resistance and negligible propagation delay.

The DG3157 can handle both analog and digital signals and permits signals with amplitudes of up to V_{CC} to be transmitted in either direction.

When the Select pin is low, B_{0} is connected to the output A pin. When the Select pin is high, B_{1} is connected to the output A pin. The path that is open will have a highimpedance state with respect to the output. Make-beforebreak is guaranteed. An eptiaxial layer prevents latch-up.

FEATURES

- Direct Cross to Industry Standard SN74LVC1G3157, NC7SB3157, NLASB3175, PI5A3157, and STG3157
- SC-70 6-Lead Package
- 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5Ω Connection Between Ports
- Minimal Propagation Delay
- Break-Before-Make Switching
- Zero Bounce In Flow-Through Mode

RoHS* COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

Device Marking: G1

TRUTH TABLE	
Logic Input (S)	Function
0	$\mathrm{~B}_{0}$ Connected to A
1	$\mathrm{~B}_{1}$ Connected to A

ORDERING INFORMATION

Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC70-6	DG3157DL-T1
DG3157DL-T1-E3		

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference V+ to GND		-0.3 to +6	V
S, A, B ${ }^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (Any terminal)		± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 200	
Storage Temperature	D Suffix	-65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	6 -Pin SC70 ${ }^{\text {c }}$	250	mW

Notes:

a. Signals on A, or B or S exceeding $V+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.25 \mathrm{~V}$ to $0.7 \mathrm{~V}+{ }^{\mathrm{e}}$		Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$			
AC Electrical Characteristice									
Prop Delay Time ${ }^{\text {f }}$	$\mathrm{t}_{\text {PHL }} / /_{\text {PLH }}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	$\mathrm{V}+=1.65$ to 1.95 V		Full				ns
			$\mathrm{V}+=2.3$ to 2.7 V	Full		1.2			
			$\mathrm{V}+=3.0$ to 3.6 V	Full		0.8			
			$\mathrm{V}+=4.5$ to 5.5 V	Full		0.3			
Output Enable Time ${ }^{\dagger}$	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$	$\begin{aligned} & V_{\text {LOAD }}=2 \times V+\text { for } t_{P Z L} \\ & V_{\text {LOAD }}=0 \mathrm{~V} \text { for } t_{\text {PZH }} \end{aligned}$	$\mathrm{V}+=1.65$ to 1.95 V	Room Full		$\begin{aligned} & 10.2 \\ & 10.4 \end{aligned}$			
			$\mathrm{V}+=2.3$ to 2.7 V	Room Full		$\begin{aligned} & 5.9 \\ & 6.2 \end{aligned}$			
			$\mathrm{V}+=3.0$ to 3.6 V	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		$\begin{aligned} & \hline 4.1 \\ & 4.5 \end{aligned}$			
			$\mathrm{V}+=4.5$ to 5.5 V	$\begin{aligned} & \text { Room } \\ & \text { Fill } \end{aligned}$		$\begin{aligned} & 2.6 \\ & 2.9 \end{aligned}$			
Output Disable Time ${ }^{\text {f }}$	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & V_{\text {LOAD }}=2 \times V+\text { for } t_{\text {PLZ }} \\ & V_{\text {LOAD }}=0 \mathrm{~V} \text { for } t_{\text {PHZ }} \end{aligned}$	$\mathrm{V}+=1.65$ to 1.95 V	$\begin{aligned} & \text { Room } \\ & \text { Fill } \end{aligned}$		$\begin{aligned} & 10.2 \\ & 10.4 \end{aligned}$			
			$\mathrm{V}+=2.3$ to 2.7 V	$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$		$\begin{aligned} & 5.9 \\ & 6.2 \\ & \hline \end{aligned}$			
			$\mathrm{V}+=3.0$ to 3.6 V	$\begin{aligned} & \text { Room } \\ & \text { Fill } \end{aligned}$		$\begin{aligned} & 4.1 \\ & 4.5 \end{aligned}$			
			$\mathrm{V}+=4.5$ to 5.5 V	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		$\begin{aligned} & 2.6 \\ & 2.9 \end{aligned}$			
Break-Before-Make Time ${ }^{\text {d }}$	$\mathrm{t}_{\text {BBM }}$	$\mathrm{V}+=1.65$ to 1.95 V		Full	0.5				
		$\mathrm{V}+=2.3$ to 2.7 V		Full	0.5				
		$\mathrm{V}+=3.0$ to 3.65		Full	0.5				
		$\mathrm{V}+=4.5$ to 5.5 V		Full	0.5				
Charge Injection ${ }^{\text {d }}$	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{gathered}$	$\mathrm{V}+=5 \mathrm{~V}$	Room		7		pC	
			$\mathrm{V}+=3.3 \mathrm{~V}$	Room		3			
Analog Switch Characteristics									
Off Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$		Room		- 57.6		dB	
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$			Room		- 58.7			
- 3-db Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		Room		> 250		MHz	
Capacitance									
Control Pin Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}+=0 \mathrm{~V}$		Room		4.9		pF	
B Port Off Capacitance ${ }^{\text {d }}$	$\mathrm{ClO}_{\text {IO-B }}$	$\mathrm{V}+=5 \mathrm{~V}$		Room		<6.5			
A Port Capacitance When Switch Enable ${ }^{\text {d }}$	$\mathrm{ClO}_{\text {IOA(on) }}$			Room		< 18.5			

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by design and not production tested. The bus switch propagation delay is a function of the RC time constant contributed by the on-resistance and the specified load capacitance with an ideal voltage source (zero output impedance) driving the switch.

[^0]Vishay Siliconix

LOGIC DIAGRAM (POSITIVE LOGIC)

Figure 1.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

AC LOADING AND WAVEFORMS

Figure 2. AC Test Circuit

Figure 3. AC Waveforms

Notes:

- C_{L} includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
- The outputs are measured one at a time with one transition per measurement.
- $t_{\text {PLZ }}$ and $t_{\text {PHZ }}$ are the same as $t_{\text {dis }}$.
- $t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{\text {dis }}$.
- $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {dis }}$.
- $\mathrm{V}_{\mathrm{LD}}=2 \mathrm{~V}+$.

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)
Figure 4. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 5. Charge Injection

Figure 6. Off-Isolation

Figure 7. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72648.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

